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Abstract: In this paper, we model the noise present in middle and upper layers of the atmosphere for the data collected 

from the Indian MST Radar. People carry out their analysis assuming that the noise is Gaussian and in fact, in most of 

the scenarios, the noise is Gaussian. There is a much chance of getting inaccurate results if it is not. Gaussianity tests 

namely Autocorrelation (AC) and Power Spectral Density (PSD) tests are conducted to find whether the noise is 
Gaussian or not. In non-Gaussian cases, further analysis is carried out using Empirical Mode Decomposition (EMD). 

Once the exact type of noise contained in the data is known, specific denoising techniques can be applied so as to get 

better results. We develop the energy models of various noise distributions using EMD, test on random sequences, 

exponentials and derive the characteristics under various environments. Finally, the developed models are compared 

with the models obtained with the radar data and noise characterization is done. 
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I. INTRODUCTION 

Major advancements have been made in the radar probing 

of the atmosphere in early seventies through the 

pioneering work of Woodman and Guillen [1]. It led to 

explore the entire Mesosphere - Stratosphere - 

Troposphere (MST) region by means of high power VHF 

backscatter operating ideally around 50MHz. The concept 

of MST radar has been evolved from this idea and has 

been proved to be an excellent system in exploring the 
dynamics of middle and upper layers of atmosphere. The 

National MST Radar Facility (NMRF) has been 

established at Gadanki (13.50  𝑁, 79.20  𝐸) in India is used 
for the purpose of atmospheric probing in the MST 

regions. The Indian MST radar is highly sensitive, pulse-

coded, coherent VHF phased array radar [2] [3] operating 

at 53MHz with a peak power-aperture product of 

3X1010  W𝑚2. The echoes received from MST region 
represent atmospheric background information and is 

considered to be generated through a random process. The 

data are collected by the radar from multiple beam 

positions (East, West, North, South, Zenith-X and Zenith-

Y). In the atmosphere, turbulence can be thought of as 

random motion of a fluid thus causing variations in the 

refractive index. 
 

 The main purpose of Indian MST radar is to study winds, 

waves, turbulence and estimate the wind parameters by 

using the echoes obtained over the height range of 1-100 

km. In this paper, the data collected on June 9, 2006 over 

the range from 3.6 km to 25.6 km above the earth's surface 

with 150m resolution are taken. The echoes received from 

the heights below 50 km arise primarily due to neutral 

turbulence and above that height is due to irregularities in 

the electron density. In the height range of 30-60 km, 

atmosphere density as well as electron density are very 
low resulting in very weak echoes. The efficiency of the 

radar system depends on how best it can identify the 

echoes in the presence of noise and unwanted clutter. 

Spectral analysis techniques are applied to the data to  

estimate the Doppler spectrum in which some of the steps 

will be carried out in on-line and some in off-line. The  

 

 

data input to the processing system is in complex format 
obtained after decoding and coherent integrations. FFT is 

applied to the complex time-series data and power spectra 

is produced for each range bin in on-line processing while 

parameter extraction is done in off-line. 

 

 
Fig. 1 (a) Typical Spectra of the East beam using PCA (b) Estimation of 

Wind velocity using WBD and PCA for radar data 

 

Fig. 1a shows the spectrum of the East beam using 

Principal Component Analysis (PCA). The left side axis 

indicates the range (km) and is divided into 147 bins. For 

convenience, the total number of bins is characterized into 

three levels: lower bins numbered from 1 to 50, middle 

bins numbered from 51-100 and upper bins numbered 

from 101-147. It is observed that the lower bins of the 

atmosphere are noise-free and Doppler frequencies can be 

found easily. The spectrum in the middle and upper layers 

is dominated with noise. Several denoising techniques 

exist that can be applied in order to obtain a smooth 
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Doppler such that wind parameters can be estimated 

accurately if the noise added is Gaussian. Such denoising 

techniques are Wavelet Based Denoising (WBD) [4] and 

Principal Component Analysis (PCA). Fig. 1b shows wind 

velocity estimates using WBD and PCA and compared 

against the profile obtained using GPS sonde. There is a 

much variation in estimations at the middle layers as the 

applied WBD and PCA employ Gaussian based denoising 
techniques. Since the data has been probed through 

different layers of atmosphere, it cannot be made sure that 

the noise added to the echoes is Gaussian. It may be one or 

mixture of noise distributions that exist in nature. So, if the 

noise distribution is explored, better results can be 

obtained. By central limit theorem, the distribution is 

Gaussian in most of the cases and denoising techniques are 

applied accordingly. 

 

In this paper, we first find whether the distribution is 

Gaussian or not using Gaussianity tests. The tests are 
described in Section II. If it is found to be non-Gaussian, 

we try to find the noise distribution using EMD which is 

described in Section III. For this purpose, energy models 

using EMD are developed for the simulated signals such 

as exponentials as well as random sequences and are 

compared with the models obtained with the radar data. 

Results are discussed in Section IV. 

II. TESTS FOR GAUSSIANITY 

The modelling of real-world signals is discussed in [5]. 

The objective of signal modelling is to consider some 

sample sequence of a signal, estimate the model 

parameters such that it has to satisfy prescribed criterion. 
In the first step, the model is to be fitted followed by the 

validation of the model so as to fit with the key features of 

data considered. 

 

Autocorrelation test When the length of the data sequence 

𝑁 is large enough, the distribution of the estimated 

autocorrelation coefficients 𝑝  𝑙 = 𝑟 (𝑙)/𝑟(0) is 

approximately Gaussian with zero mean and variance of 

1/𝑁 [6]. The approximate 95 percent confidence limits are 

±1.96/ 𝑁. Any estimated values of 𝑝  𝑙  that fall outside 

these limits are significantly different from zero with 95 

percent confidence. The values that cross confidence 

limits indicate nonwhiteness of the residual signal. 

 

Power Spectral Density test The standardized cumulative 

Periodogram of a random sequence of length 𝑁 is defined 

by 

𝐼  𝑘  ≜  

 
 

 
 0,                               𝑘 < 1

 𝑅 (𝑒𝑗2𝜋𝑖/𝑁)𝑘
𝑖=1

 𝑅 (𝑒𝑗2𝜋𝑖/𝑁)𝐾
𝑖=1

,                1 ≤ 𝑘 ≤ 𝐾

1,                                𝑘 > 𝐾

  

where 𝐾 is the integer part of 𝑁/2. If the process is White 

Gaussian, then the random variables 𝐼  𝑘 , 𝑘 =
1,2,……… ,𝐾 are independently and uniformly distributed 

in the interval (0, 1). The plot of 𝐼  𝑘  should be 

approximately linear with respect to 𝑘. The hypothesis is 

rejected at level 0.05 if 𝐼  𝑘  exits the boundaries specified 

by 

𝐼  𝑏  𝑘 =  
𝑘 − 1

𝐾 − 1
 ± 1.36 𝐾 − 1 −

1
2      1 ≤ 𝑘 ≤ 𝐾 

 

The tests are performed on Gaussian noise and 

exponentials with SNRs of 10dB and -10dB. Results are 

shown in Fig. 2. The vertical solid lines of Fig. 2a indicate 

the amplitude levels of estimated autocorrelation 

coefficients 𝑝  𝑙  plotted against lag, solid line of Fig. 2b 

indicates 𝐼  𝑘  plotted as the function of normalized 

frequency and the dashed lines in both indicate the 

confidence limits. The first coefficient at lag 0 will be 

unity in all the cases. If all the remaining solid lines fall 

within the limits, it indicates Gaussianity. The same 

applies to PSD test also. In the case of noise-only signal, 

all the solid lines in Fig. 2a and 2b fall within dashed lines 
as expected. If it is pure signal, those lines cross the dotted 

lines indicate the non-Gaussianity. In case of 10dB noisy 

signal where signal dominates noise, the tests still indicate 

nonwhiteness. But, for a -10dB noisy signal, the tests 

indicate the Gaussianity although the signal contains a 

frequency. From the analysis made, it can be concluded 

that the tests show the presence of Gaussianity if the signal 

has an SNR less than -10dB even though it contains a 

frequency. 

 

 
 

Fig. 2 Autocorrelation and PSD tests on deterministic signals 
 

The tests are applied on radar data for all the beams at 

different levels: lower, middle and upper bins. The results 

are shown in Fig. 3 of one bin each at three levels for all 

the beams. It is inferred that at lower bins up to 50, there is 

no case of Gaussianity and at higher bins from bin 

numbered 116, Gaussianity begins in all the beams. In the 

upper middle bins, i.e. above 75th bin, Gaussianity begins 

in non-vertical beams and no Gaussianity in the vertical 

beams. But, from Fig. 4, some bins show non-Gaussianity 

in non-vertical beams as it is expected to be Gaussian, 

which are termed as Ambiguity Bins. It can't be concluded 
with these tests that whether Gaussianity exists or not as 

several algorithms fail at those bins and thus get inaccurate 

wind speeds. Special attention is to be paid to determine 

the noise distribution so as to get better results by applying 

appropriate denoising techniques. To this end, we go for a 

data analysis technique called Empirical Mode 

Decomposition and significant conclusions are drawn. 
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Fig. 3 Autocorrelation and PSD tests on radar data for bins 25, 80 and 

140. 

 

 
 
Fig. 4 Ambiguity cases on application of Autocorrelation and PSD tests 

on radar data for bins 90 and 91 

III. EMPIRICAL MODE DECOMPOSITION 

Traditional EMD: Since there exists an ambiguity in 
concluding that the noise in the upper middle bins is 

Gaussian, the noise distribution is analysed using EMD in 

this section. EMD localizes any event on both time as well 

as frequency scales. A signal is decomposed into a number 

of Intrinsic Mode Functions (IMFs) [7] based on energy 

extraction associated with various intrinsic time scales. 

From the Hilbert transform of these IMFs, instantaneous 

frequencies can be calculated. For an arbitrary time series 

𝑋(𝑡), Hilbert transform 𝑌(𝑡) is defined as 

𝑌 𝑡 =
1

𝜋
𝑃  

𝑋 𝑡 ′ 

𝑡 − 𝑡 ′

∞

−∞

𝑑𝑡 ′                     (1) 

where 𝑃 indicates the Cauchy principal value. With this 

definition, 𝑋(𝑡) and 𝑌(𝑡) form the complex conjugate pair 

and we can have an analytic signal 𝑍(𝑡) as 

𝑍 𝑡 = 𝑋 𝑡 + 𝑖𝑌 𝑡 = 𝑎 𝑡 𝑒𝑖𝜃 𝑡                   (2) 

where  

𝑎 𝑡 = [𝑋2 𝑡 + 𝑌2(𝑡)]
1

2  𝑎𝑛𝑑 𝜃 𝑡 = tan−1  
𝑌 𝑡 

𝑋 𝑡 
  (3) 

Equation (1) defines the Hilbert transform as the 

convolution of 𝑋(𝑡) with 1/𝑡 and the polar coordinate 

expression (2) represents the local nature of (1). With the 
Hilbert transform, the instantaneous frequency is defined 

as, 

𝜔 =
𝑑𝜃

𝑑𝑡
                                              (4) 

For defining the instantaneous frequency, the necessary 
condition is that the functions should be symmetric with 

respect to local zero mean and have the same number of 

zero crossings and extrema. Thus, the concept of IMF 

came into existence. The name is adopted so because it 
represents the oscillation mode embedded in the data. A 

function is said to be an IMF if it satisfies the following 

two conditions: 

1. The number of extrema and the number of zero 
crossings must either equal or differ at most by one and 

2. The mean value of the envelopes defined by the 
local maxima and the local minima is zero. 

The description of the conditions is defined in [7]. But, 

most of the data are not IMFs. At any given time, the data 
may involve more than one oscillatory mode and that is 

why the simple Hilbert transform cannot provide the full 

description of the frequency content for the general data 

[8]. The EMD is based on the following assumptions:  

1. The signal has at least two extrema: one 
maximum and one minimum 

2. The characteristic time scale is defined by the 
time lapse between the extrema and 

3. If the data were totally devoid of extrema but 
contained only inflection points, then it can be 

differentiated once or more times to reveal the extrema. 

Let us consider EMD decomposition for the data 𝑋(𝑡). 
The decomposition method starts with defining the local 

maxima and local minima. All the local maxima and local 

minima are connected by two different envelopes such that 

entire data is covered in between them. Let 𝑚1 be the 

mean of the two envelope and ℎ1 be the difference 

between the data 𝑋(𝑡) and mean 𝑚1 which is expressed 

mathematically as, 

𝑋 𝑡 −𝑚1 = ℎ1                                       (5) 

This is first sifting. ℎ1 is the first component decomposed 
from the signal which should be an IMF ideally. But, 

overshoots and undershoots occur which can generate the 

new extrema. So, sifting process is done again considering 

ℎ1 as data and is represented as, 

ℎ1 −𝑚11 = ℎ11                                   (6) 

where 𝑚11 be the mean of the envelopes defined for ℎ1. 

Still ℎ11  may not be an IMF. Sifting process is repeated 𝑘 
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times until ℎ1𝑘  is an IMF. The 𝑘𝑡ℎ component is defined 

as, 

ℎ1(𝑘−1) −𝑚1𝑘 = ℎ1𝑘                               (7) 

Thus, the first IMF component from the data is designated 

as, 

𝑐1 = ℎ1𝑘                                            (8) 

Now, 𝑐1 can be separated from the data by, 

𝑋 𝑡 − 𝑐1 = 𝑟1                                        (9) 

where 𝑟1 is the residue which still contains information of 
longer period components. Now, it is treated as the new 

data and is subjected to same sifting process (steps [5] to 

[8]). The process is repeated on all the subsequent 𝑟𝑗 𝑠 as, 

𝑟1 − 𝑐2 = 𝑟2 , 𝑟2 − 𝑐3 = 𝑟3 ,…… ,   𝑟𝑛−1 − 𝑐𝑛 = 𝑟𝑛    (10) 

The sifting process is stopped when any of the following 
criteria occurs: 

1. When either the component 𝑐𝑛  or the residue 𝑟𝑛  
becomes less than the predetermined value or 

2. When the residue 𝑟𝑛  becomes a monotonic 
function from which no IMF can be extracted. 

By the decomposed IMF components, data 𝑋(𝑡) can be 

expressed as the linear combination of 𝑛-empirical modes 

and a residue 𝑟𝑛  as 

𝑋 𝑡 =  𝑐𝑖

𝑛

𝑖=1

+ 𝑟𝑛                              (11) 

All the steps involved in EMD decomposition are shown 

in Fig. 5. 

Complex EMD (CEMD): The traditional EMD explained 

above is applicable only for real-valued data. There is 

need in developing EMD for complex time-series data 
because in practical areas like sonar radar, 

telecommunications etc., complex-valued data is used. A 

method for complex-data has been proposed [9]. The basic 

idea behind the development of CEMD is that: a) it 

behaves as a dyadic sub band decomposition structure [10] 

b) divide the complex signal into its positive and negative 

frequency parts and derive the relation between them. The 

CEMD for 𝑥[𝑛] can be expressed as, 

𝑥 𝑛 =  𝑦𝑖[𝑛]

𝑁+

𝑖=−𝑁−,𝑖≠0

+ 𝑟 𝑛                  (12) 

 
 

Fig. 5 Steps involved in classical EMD 

where 

𝑦𝑖 𝑛 =  
 𝑥𝑖 𝑛 + 𝑗ℋ 𝑥𝑖 𝑛      𝑖 = 1,…… ,𝑁+

 𝑥𝑖 𝑛 + 𝑗ℋ 𝑥𝑖 𝑛   
∗
  𝑖 = −𝑁−,…… ,−1

 (13) 

is the 𝑖𝑡ℎ  complex IMF and 𝑟[𝑛] represents a trend within 
the data set. We apply CEMD to study the characteristics 

of Gaussian noise. For this, a set of 1000 independent 

Gaussian complex-valued time series of 512 samples is 

generated. The power spectra of IMFs generated from 

these complex-valued time series data are analyzed and 

the resulting spectra are averaged. Fig. [6] depicts the 

averaged spectra for the first seven IMFs in both the 

negative and positive frequency range. The idea behind 

this simulation is to understand that CEMD decomposes 

broadband noise. 

 

 
 

Fig. 6 Complex-valued EMD and the equivalent filters within a filter 

bank 

Bivariate EMD (BEMD) Although CEMD decomposes 
noise well, treating the positive and negative frequency 

components as two separate independent signals results in 

loss of information in the signal as they are mutually 

dependent. Also, the division into positive and negative 
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frequency components creates an ambiguity at the zero 

frequency. It also cannot be extended to higher-

dimensional cases. To overcome all the above, BEMD has 

been proposed [11] which decomposes a complex signal 

with traditional EMD by operating completely in C. The 

merits of BEMD over CEMD are that of no need of 

splitting the signal into two parts, can be extended to 

higher dimensional cases and no ambiguity case at zero 
frequency. Traditional EMD is based on the notion of 

oscillation where as BEMD is based on the notion of 

rotation. The basic idea behind the BEMD development is 

that bivariate signal = fast rotations superimposed on 

slower rotations [11]. The slowly rotating component is 

defined as the mean of envelope which is three-

dimensional tube that encloses the signal. The slowly 

rotating portion of the signal at any point in time can be 

defined as the center of the enclosing tube. For defining 

the center, only a given number of points on the tube's 

periphery are considered, each one being associated with a 
specific direction. Any number of points is considered. For 

example, if four points are taken, they can be the extreme 

points in top, bottom, left and right directions. The point in 

each direction is defined in a unique way, for example, the 

top point is defined only when the signal reaches a local 

maximum in the vertical direction and is also tangent to 

the top of the tube. With this, the mean of the envelope is 

defined as the intersection of two straight lines, one being 

halfway between the two horizontal tangents and the other 

one being halfway between the two vertical tangents as 

shown in Fig. 7. 

 
Fig. 7 Mean Definition of Envelope in BEMD 

Let 𝜑𝑘 = 2𝑘𝜋
𝑁 , 1 ≤ 𝑘 ≤ 𝑁 be the set of directions with 

𝑁 being the number of directions. BEMD is in concept 

same as that of traditional EMD except that two new 

sifting elementary operators 𝑆𝐵1 and 𝑆𝐵2 are introduced 
[11] and the algorithmic steps given in [11] are presented 

below for completeness. 

Algorithm 1 

1. For each direction 𝑘 ∈ [1,𝑁], 

1.a.  Project the complex-valued signal 𝑥(𝑡) on direction 

𝜑𝑘: 𝑝𝜑𝑘
 𝑡 = 𝑅𝑒 (𝑒−𝑖𝜑𝑘𝑥(𝑡)) 

1.b.      Extract the locations 𝑡𝑖
𝑘  of the maxima of 𝑝𝜑𝑘

 𝑡  

1.c.  Interpolate the set (𝑡𝑖
𝑘 ,𝑥(𝑡𝑖

𝑘)) to obtain the envelope 

curve in direction 𝜑𝑘 : 𝑒𝜑𝑘
 𝑡 . 

   2.  Compute the mean of all the envelope curves: 

𝑚 𝑡 =  
1

𝑁
 𝑒𝜑𝑘

 𝑡 𝑘 . 

   3.    Subtract the mean to obtain 𝑆𝐵1 𝑥  𝑡 = 𝑥 𝑡 −
𝑚(𝑡).  

 

Algorithm 2 

1. For each direction 𝑘 ∈ [1,𝑁], 

1.a.  Project the complex-valued signal 𝑥(𝑡) on direction 

𝜑𝑘: 𝑝𝜑𝑘
 𝑡 = 𝑅𝑒 (𝑒−𝑖𝜑𝑘𝑥(𝑡)). 

1.b.      Extract the maxima of 𝑝𝜑𝑘
 𝑡 ∶  𝑡𝑖

𝑘 ,𝑝𝑖
𝑘 . 

1.c.  Interpolate the set (𝑡𝑖
𝑘 , 𝑒𝑖𝜑𝑘𝑝𝑖

𝑘) to obtain the partial 

envelope curve in direction 𝜑𝑘 : 𝑒𝜑𝑘
1  𝑡 . 

       2.  Compute the mean of all tangents: 𝑚 𝑡 =

 
2

𝑁
 𝑒𝜑𝑘

1  𝑡 𝑘 . 

       3.   Subtract the mean to obtain 𝑆𝐵2 𝑥  𝑡 = 𝑥 𝑡 −
𝑚(𝑡). 
 

Algorithm 2 is further simplified to Algorithm 3 as below: 

 

Algorithm 3 

1. For each direction 𝑘 ∈ [1,𝑁/2], 

1.a.  Project the complex-valued signal 𝑥(𝑡) on direction 

𝜑𝑘: 𝑝𝜑𝑘
 𝑡 = 𝑅𝑒 (𝑒−𝑖𝜑𝑘𝑥(𝑡)). 

1.b.    Compute the partial estimate in direction 𝜑𝑘 : 

𝑠𝜑𝑘
 𝑡 = 𝑒𝑖𝜑𝑘𝑆[𝑝𝜑𝑘

] 𝑡 . 

       2.  Compute the final estimate: 𝑆𝐵2 𝑥  𝑡 =

 
2

𝑁
 𝑠𝜑𝑘

 𝑡 𝑘 . 

IV. NOISE MODELLING 

 

Theoretical models 

 

The driving idea of the present paper is that if the energies 

of the IMFs resulting from the decomposition of a noise-

only signal are known, then in actual cases of radar signals 

comprising of both information and noise, noise can be 

characterized and separated such that further analysis is 

carried out on the resulting denoised signal. In the present 

context, we restrict to noise characterization only. The 

power spectra of noisy IMFs exhibit the same 
characteristics as those obtained with any dyadic filter 

structure. Thus, the IMF energies should linearly decrease 

with respect to the IMF number [12]. In this paper, we 

consider the following distributions: Gaussian, Rayleigh, 

Cauchy, Laplace and Weibull for modelling the noise in 

the radar data. Since the length of complex time series of 

each bin of the raw data is 512, we take the same number 

of Uniform random variables distributed in the interval 

(0,1) and generate the above mentioned distributions using 

standard transformations. BEMD is applied for the 

distributions, IMFs are generated and energies are 
calculated. As the IMFs are complex-valued, energy 

models are developed for three different cases: directly 

obtained complex IMFs, real part of complex IMFs and 

imaginary part of complex IMFs. Thus, 1000 Monte Carlo 

simulations are run, find the average energies and the 

same are plotted as shown in Fig. 8. 

 

http://www.ijireeice.com/


ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 
                     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                    Vol. 2, Issue 4, April 2014 
 

Copyright to IJIREEICE                                                                       www.ijireeice.com                                                                                            1412 

 
 

Fig. 8 Energy Models of Various Districutions (a) Complex IMF Energy 

Model (b) Real Part Energy Model and (c) Imaginary Part Energy Model 
 

Testing the models on exponentials 

 

Before applying to the radar data, the developed energy 

models are tested on the same test signals taken in section 

II. The results are as shown in Fig. 9. When BEMD is 

applied to a pure exponential, it results in a single IMF as 

all the oscillations are constrained in the first IMF itself. 

The energy of IMF is far greater than that of energy of 

first IMF of the developed energy models. This type of 
plot tells us that signal is pure and consists of a single 

frequency. When BEMD results in more than one IMF, the 

signal may be noisy signal or consists of more than one 

frequency. For a signal with 10dB SNR, BEMD results in 

a few IMFs. From the energy model, it is seen that signal 

is in second IMF as its energy point deviates from the 

regular noise model developed. The energies of remaining 

IMFs are in concurrence with the developed model 

indicating that the noise containing in those IMFs is 

Gaussian. At this point, we stand at two different 

conclusions: signal is present in only second IMF and is 
taken as denoised signal or the noise in the signal is 

characterized as Gaussian. The same occurs with 0dB 

SNR signal also. But, signal is in third IMF now and also 

more number of IMFs results as compared to second case 

because oscillations will be present more when noise 

increases. For a -10dB test signal, the obtained energy 

model follows the same trend as that of developed noise 

model of Gaussian since noise dominates the signal. 

Signal of very low strength is found in third IMF. From 

the plots, it is clearly seen that if BEMD is applied on a 

signal consisting of Gaussian noise, the resulting Energy-

IMF# model conveys that noise present is Gaussain and 
also tells us which IMFs consist of Gaussian noise. The 

same is applicable to all other distributions. 

 

Testing the models on radar signals 

 

     In the similar manner, we apply BEMD to the radar 

dara for ambiguity bins. The results are shown in Fig. 10 

using complex IMF energy model for bin numbered 90. 

Although, results for only one bin are shown, the same 

trends are obtained almost in every ambiguity bin for all 

hree developed models: complex, real and imaginary 

Energy-IMF# models. So, only complex energy model is 

shown. In very few cases, results obtained are a bit 

different. Consider the north beam of bin numbered 91 for 

which results are shown in Fig. 11. The overall complex   

 

 
 
Fig. 9 Testing of Energy Models on Simulated signals with complex IMF 

Energy Model 
 

 
 
Fig. 10 Testing of Energy Models on Radar data with complex IMF 

Energy Model for bin 90  

 

 
Fig. 11 Testing of Energy Models on Radar data with complex, real and 

imaginary IMF Energy Models for bin 91 
 
energy model shows Rayleigh distribution whereas the 

real and imaginary energy models show Weibull and 

Rayleigh distributions respectively. It may be viewed that 

imaginary part is more contributing than the real part of 

the complex radar data in these particular cases. But, on 

the whole, we have to concentrate on the complex energy 

model. Only first few IMFs are to be considered more to 

find whether the noise in radar data being under test is 
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following any trend with the developed models. The 

reason is that noise is contained in the first few IMFs and 

signal is present in the remaining IMFs, if any, as seen in 

case of simulated signals. From the overall analysis carried 

out on ambiguity bins for data on different dates and 

scans, it is seen that non-vertical beams East and North 

follow Rayleigh distribution, West and South beams 

follow Weibull distribution, vertical beams Zenith-X and 
Zenith-Y follow Gaussian distribution. Thus, noise 

characterization in ambiguity bins where the noise is 

expected to be other than Gaussian is realized in this 

paper. 

V. CONCLUSION 
 

   We characterize the noise present in the radar data and 

significant conclusions are drawn. With the derived noise 
characterization, certain techniques can be applied to the 

noisy radar signal to reconstruct the signal in order to 

estimate the wind parameters more accurately. The 

analysis is carried out for data collected on different days 

of all beams and scans. The work can be extended by 

automating the characterization as well as reconstruction 

of the signal.   
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